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Applying the method of continuous unitary transformations to a class of 
Hubbard models, we reexamine the derivation of the t/U expansion for the 
strong-coupling case. The flow equations for the coupling parameters of the 
higher order effective interactions can be solved exactly, resulting in a systematic 
expansion of the Hamiltonian in powers of t/U, valid for any lattice in arbitrary 
dimension and for general band filling. The expansion ensures a correct treat- 
ment of the operator products generated by the transformation, and only 
involves the explicit recursive calculation of numerical coefficients. This scheme 
provides a unifying framework to study the strong-coupling expansion for the 
Hubbard model, which clarifies and circumvents several difficulties inherent to 
earlier approaches. Our results are compared with those of other methods, and 
it is shown that the freedom in the choice of the unitary transformation that 
eliminates interactions between different Hubbard bands can affect the effective 
Hamiltonian only at order t3/U 2 or higher. 
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1. I N T R O D U C T I O N  

The Hubbard model with both repulsive (1) and attractive ~2) interaction of 
local electron pairs has been extensively studied in the context of a variety 
of physical problems, e.g., in the theoretical description of magnetic 
ordering, the metal-insulator transition, bipolaronic systems, and the high- 
temperature superconductors. In general, the Hubbard model is the simplest 
model which combines strong correlations with itinerant behavior. The 
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expansion of the Hubbard Hamiltonian around the limit of strong coupling, 
i.e., in powers of t/U, has a long history, since this limit provides several 
simplifications which make the model more tractable. 

Applying different variants of degenerate perturbation theory, a number 
of results up to several orders of t/U have been obtained. These include 
the derivation of the effective spin Hamiltonian ~3~ in second order, while 
higher-order calculations, based on the perturbation theory of Kato, ~4) des 
Cloizeaux, ~5) and Primas, (6~ have been performed only for special cases. 
Klein and Seitz ~7) obtained the sixth-order spin interaction for the linear 
Hubbard chain, while Bulaevskii (8~ and Takahashi (9) derived the fourth- 
order term for the Hubbard model with half-filled band in more than one 
dimension. More recently, these perturbative methods have also been 
applied to Hubbard models with more general interactions. (1~ 

Another approach to study the effective Hamiltonian is based on 
unitary transformations. (11) Harris and Lange (12) and also Kapustin ~3) 
used such a transformation to derive second-order results and to calculate 
spectral properties of the Hubbard model. A number of authors ~t4) subse- 
quently applied unitary transformations in low orders to study several 
systems described by Hubbard models. A transformation which methodi- 
cally includes also higher orders in t/U has been proposed by Chao, 
Spatek, and OleO. (15~ In their expansion, closed expressions for the effective 
interaction are obtained in any order. However, beyond second order, their 
results are an uncontrolled approximation, since the transformation of the 
Hamiltonian involves an approximation for the band energies, and in 
higher orders does not eliminate interaction terms which mix different 
Hubbard bands/~6) A systematic transformation scheme to remove 
unphysical terms, and to derive the t/U-expansion, has been formulated by 
MacDonald, Girvin, and Yoshioka/17) In their approach, interaction terms 
which do not conserve the number of local electron pairs are removed from 
the Hamiltonian order by order in an iterative treatment, generating new 
interactions and thus improving the accuracy of the transformation in each 
step. 

In the present work we utilize Wegner's method (18) of continuous 
unitary transformations to re-examine the derivation of a systematic and 
exact expansion of the Hubbard Hamiltonian in powers of t/U for the 
strong-coupling case. The goal of such a transformation is to obtain a 
classification of all possible interaction terms in t/U, with the strong-coupl- 
ing constraint that terms which connect different Hubbard bands are 
eliminated. This corresponds to a block-diagonalization of the Hubbard 
Hamiltonian. Such a continuous transformation generates all higher inter- 
actions at once. The flow equations for the couplings of these effective 
interactions can be solved exactly, and explicit solutions will be given up 
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to fifth order. We also derive sum rules for the coupling functions, which 
may serve as a useful check of the calculations. For  higher orders, recursion 
relations for the coefficients of the exact solutions are obtained and closed 
general expressions for the coupling coefficients are derived for special 
cases. Therefore, the derivation of a systematic strong-coupling expansion 
is reduced to a recursive calculation of numerical coefficients, whereas 
operator properties need not be considered any more. This method thus 
provides a simplified expansion scheme for the Hubbard model. It also 
sheds new light on the systematic relation between previous approaches 
and allows to clarify some of the deficiencies of their results. In particular, 
the continuous transformation which leads to the results of Chao, Spalek, 
and Olew is obtained, and the interaction terms which are neglected in their 
approximation are identified. Additionally, a systematic improvement of 
this approximation is proposed, which results in a consistent expansion 
eliminating linear interaction terms from the original Hubbard  model. It is 
also found that the effective interactions which correspond to the exact 
solutions of the flow equations are in agreement with the Hamiltonian 
derived by the transformation scheme of MacDonald, Girvin, and 
Yoshioka to third order in t/U, while in higher orders certain differences 
occur. These differences in the coupling coefficients appear to be a conse- 
quence of the continuous nature of our transformation and reflect the 
remaining freedom in the choice of the unitary transformation which 
eliminates interactions between different Hubbard  bands. Finally, it is 
shown that in general the effective Hamiltonian derived from the Hubbard  
model is sensitive for such a choice of the transformation only at order 
t3/U 2 or higher. 

2. FLOW EQUATIONS AND SOLUTIONS 

We consider the Hubbard  model on a general lattice A and in 
arbitrary spatial dimension, 

H =  t T  + UV= ~ * U ~' n~Tnri /rr' C r~r C r'  G "[- 

r r ' ~  r 

(1) 

where c~*~ creates an electron with spin tr at site r, and trr, = tDrr,, with the 
hopping matrix D w -- Dr*r which may connect any two of the N sites on the 
lattice. The local pairing energy U may be taken positive or negative, 
although we are mainly interested in the strong-coupling regime which 
requires It~ UI ~ 1. The fermionic Hilbert space of the model, ~g N =| 
can be decomposed into the subspaces ~ which are related to the total 
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number k of local electron pairs in the system. The projectors Pk on these 
subspaces are defined via the generating function 

N 

Pk xk= 1-[ (1--(1--X)  nrTGt) (2) 
k = O  r  

The terms appearing in the kinetic energy T can also be classified according 
to the change of the number of electron pairs which they involve, T m = 
zN= 0 Pk + m TPk, with m = 0, _+ 1. Expressed by the electron operators, they 
are explicitly given by 

T 0 = Z  * _ (1 * D,,,(n~_~c~cr o+ -n~_o) c,~c,,~(1-G,_~)) 
r r ' a  

T+,  = ~' D,r,n , ~c*~c,,~(1 --n,, ,~) (3) 
r162 

T , ~ D~r ~ CraCr, anr,_a 
r r ' ~  

One then has T = To + T+ 1 At- T_ t, and can easily verify that the relation 
[ V, T,,] = mTm holds, reflecting the transition from the Hilbert space sec- 
tor A~k to ~ +m" TO allow for variable band-filling, one may add a chemi- 
cal potential to the Hamiltonian. This does not change the subsequent 
discussion, since the Tm conserve the number of particles. To discuss 
the higher-order interaction terms in which we are eventually interested, 
it is useful to introduce products of hopping operators, T(k)(m)= 
Tin, Tin2"' Trek, with the index vectors m = (m~, m2 ..... roD. It is found that 
the commutator  of such an operator product  with V involves the total 
"weight" of the product, M ( m ) =  ~ f=  ~ mi, and generally reads 

[ V, T(k)(m)] = M(m) T(k)(m) (4) 

In the strong-coupling case of the Hubbard model, when [t[ ~ [U[, the 
energy spectrum splits into well-separated subbands with bandwidth 
~t2/[ U[ (or ~ It[, depending on the sign of U and the band-filling), and a 
gap ~ [U[ opens up between them. To study physical properties of such a 
strong-coupling model at energy and temperature scales which are well 
below the Hubbard  energy [U], it is thus desirable to consider an effective 
Hamiltonian which does not mix different Hilbert space sectors ~vgk, i.e., 
which conserves the total number of local electron pairs and is thus block- 
diagonal. 
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2.1. The Ef fect ive  Interact ions 

In order to derive such an effective Hamiltonian, we apply a con- 
tinuous unitary transformation which allows to remove interactions with 
nonvanishing overlap between different Hilbert space sectors. Of course, 
this transformation is valid for an arbitrary ratio t/U, although it is espe- 
cially suitable for the strong-coupling case. The Hamiltonian then depends 
on a continuous flow parameter/, 

H( I) = tO(l) + UV (5) 

where the generalized "kinetic" energy 0(l) also contains all higher-order 
interactions which are generated by the transformation, 

oo t k 1 
0(l) =~_ ~T-q ~ F(k)(l; m) T(k)(m) (6) 

= 1  {m} 

The flow equations will be given for the /-dependent coupling functions 
F(~)(l; m). As is shown below, a unitary transformation which eventually 
eliminates all terms from the Hamiltonian that do not conserve the number 
of local pairs, can be constructed with the (antihermitean) generator 

t ~ t k 
r/(1) = ~ [  V, O(l)] = ~ }-" M(m) F(k)(l;m) T(k)(m) (7) 

k =  1 {m} 

The flow equations for the coupling functions then follow from the basic 
transformation of the Hamiltonian, (is) 

dH(l) . . . .  
~-~ = I_qtt), H(/)] (8) 

and the initial conditions determined by the original Hubbard Hamiltonian, 

U1)(0; m) = 1 and F(k)(0; m) = 0 for k > l  (9) 

At this point it may be worth noting that the accuracy of the effective 
Hamiltonian derived by our continuous transformation (7) only depends 
on the order of t/U at which one finally wishes to truncate the calculations. 
Since the flow equations for the coupling functions can be solved exactly, 
and our approach in contrast to others [ cf., Section 3 ] does neither involve 
approximations nor the neglect of any of the newly generated higher-order 
interactions, error terms can be systematically included, improving the 
accuracy of the transformed Hamiltonian to any desired order. 

822/88/1-2-33 
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Before we obtain and solve the resulting set of coupled differential 
equations, it is useful to discuss some general symmetry properties of the 
Hamiltonian, which will result in identities between the coupling functions. 
Introducing a reversed index vector m = (mg, mk_ 1 ..... ml), one notes that 

t _  T m -  T _  m and (T(k)(m))* = T~k)(--fia). With these relations, a first sym- 
metry requirement for the coupling functions follows from the hermiteicity 
of the Hamiltonian (and from the antihermiteicity of the generator ~/). 
A second one is obtained from the observation that the global particle-hole 
transformation cr* ~ --, cr~ reverses the sign of the hopping energy, t--* - t ,  
and also results in Tm ~ T _ m .  Since the F (k) are real-valued functions, as 
is seen below [cf., Eqs. (22) and (23)], these considerations lead to the 
symmetry relations 

F(k)(l; --m) = F(k)(I; m) 

F(k)(l; --m) = ( -- 1) k+l F~k)(l; m) 
(10) 

Unfortunately, no further information is obtained from the complete SO(4) 
symmetry of the Hubbard model, (~9~ since up to the particle-hole transfor- 
mation each Tm is itself an invariant of this symmetry. 

Inserting now our ansatz for the effective interaction (6) and for the 
generator (7) into the flow equation (8) yields 

~z o(/) = - [v ,  iv, o(/)] ] + u  [[ v, o(z)], o(z)] (11) 

resulting in a set of coupled nonlinear differential equations for the 
coupling functions, 

-~F~k)(l; m ) =  --IM(m)[ 2 F(k~(l; m) 

k - - I  

n = 1 { m l , m 2 }  

m = ( m l ,  m2) 

( M ( m l ) -  M(m2)) F(n)(l; ml) F (k "~(1; m2) 

(12) 

with the obvious condition m = (ml, m2) which reflects the generation of 
higher products T (k) by the transformation. From these equations (12) one 
can immediately deduce 

F(~)(1; m) = 0 if IM(m)[ > 1 (13) 

which reduces the number of possible interactions significantly. Thus, the 
unitary transformation resulting from (7) intermediately generates only 
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such interaction terms which connect identical or adjacent Hubbard bands. 
A further simplification arises from the symmetry propertties (10), which imply 

F(~) ( / ;m)-0  if keven and f i l=m (14) 

It is also apparent from (12) that terms with M ( m ) #  0 are exponentially 
damped and in the limit l ~  oo vanish. Extracting such an exponential 
prefactor from the coupling functions, we may write 

r(k)(l; m) =exp( --[M(m)[ 2 1).f(k)(l; m) (15) 

Introducing the weight index 2 = M(m), with the possible values 2 = 0, _+ 1, 
from Eqs. (12) we obtain the final form of the flow equations, 

k - - 1  

�9 e2~dt'(k)(l" m ) = 2  ~ ~ (f(~(l ;  ml)f(ki-~)(l; m2) dUO k, 
n = t { m ~ , m 2 }  

m - -  ( m l ,  m2) 

- f ( ~ ( l ;  m~) f ~ ) ( / ;  m2)) (16) 

for the "physical" interactions with 2 = 0, and 

. d  k - - I  

"f6~)(l; m ) = 2  Z ~ (/~')(/; m,)f(o~-m(/; m2) 
d l  JA, \ 

n -- 1 { m  I ,m2} 

m ( m  I ,m2)  

- f~ ) ( l ;  m l ) f ]  k ")(/; m2)) (17) 

for the unphysical terms with [2[ = 1. Although in the process of the trans- 
formation flow these unphysical interactions in the l ~ Go limit will finally 
be removed from the Hamiltonian, we nevertheless have to determine the 
corresponding coupling functions, since intermediately they are coupled to 
the physical ones. Having solved the flow equations (16) and (17), one 
finds the coupling coefficients for the physical interaction terms, C(k)(m)= 
F~0~)(oo; m). Explicit results for the coupling functions and coefficients are 
listed in Tables I and II. The typical cases for the behaviour of the func- 
tions F(k)(l; m) are shown in Fig. 1. 

2,2. Recursion Relat ions 

At a given order k, the maximal possible number JF~(k) of interactions 
with M ( m ) =  2 is obtained from the expression 

~ ( k ) =  ~, for k~>2 (18) 
= l  \nJ \n-  I,~1 
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Table I. The Solutions of the Flow Equations for the Coupling Functions 
F(k)(I; m), with M ( m ) = O  and k~<5, and the Corresponding Coupling 

Coefficients clk)(m)" 

k (m) C(~)(m) F(k)(l; m) 

(0) +1 
( + l ,  --1) +1 
(+1,0,  - 1 )  +1 
(+1, - 1 , 0 )  - I  
(+ 1, 0, 0, - 1 )  +1 
(+1,0,  - 1 , 0 )  - 1  

(0, + 1 , - 1 , 0 )  + I  
(+1, - 1 ,  0, 0) +�88 
(+l, -1, +l, -1) -1 
( + i ,  + l , - - 1 ,  - l )  + I  
( + l ,  0,0, 0, - 1 )  +1 
(0, +1,0, 0, - 1 )  - 3  

(0,0, + l , 0 ,  - 1 )  +3 
(0, 0, 0, + l ,  - 1 )  - ~  
(0, + l ,  - 1 , 0 , 0 )  3 
(0, + l , 0 ,  - 1 , 0 )  +3 

+ l , - - l ,  + l , - - 1 ,  O) +9 
+ l , - l , - - 1 ,  + l , 0 )  _3 
+ l , - - 1 ,  + 1 , 0 , - 1 )  _3 

+ l ,  -1 ,  -1 ,0 ,  + l )  +�89 
+ l ,  --l,O, --1, +1) --�88 
+1, + l , - - 1 ,  O,--1) +~- 
+ l ,  +l,O, --1,--1)  +�88 
+ l , - 1 , 0 ,  + l , - - 1 )  +3 

+ l ,  + l ,  - 1 , - 1 , 0 )  -~- 

1 
1 - e -2l 

1 - (2l+ 1) e -2t 
- l ( 1  - ( 2 l +  1) e -21) 

1 - (2l 2 + 2l + 1 ) e -21 

- ( 1 - ( 2 1 2 + 2 1 +  1)e -2t) 
�89 -(212 + 2 l +  1) e 21) 
�88 - (212 + 2 l +  1) e -21) 
- ( 1 - 41e -2t _ e -4t )  
1( 1 - 4le- 21- e-4r) 

1_(413+212+2l+1)e 21 
- 3 ( 1  - ( 4 1 3 + 2 l  2 + 2 1 +  l )  e -2')  

3(1 - (413 +212 + 2 l +  l) e -2') 

- -~ (1 - (413+212+2 l+1)e  2t) 
_ 3( 1 - (413 + 212 + 2 l  + 1) e - 2 / )  

3(1 -- (413 + 2l 2 + 21+ l) e -zl) 
9_(712 + 21+ 3) e -Z l_( l+  3)e 41 

-~(1 -(412 + 2)e-Zl +e -4t) 
-3+(41Z+4l)  e 2l+ (21+ 3) e -4/ 

�89 - (412+2)e  2/+ e-4/) 
-�88 -(412 + 2) e-Zl +e -41) 

�89 e 21+ e-41 ) 
�88 - ( 2 l -  1 ) e - 2 l -  (l + 3) e-4/ 
3 2 z - ( l  +41-3)  e -Zl - (21+9)e  41 

_~+(212+l+�89 e-Z,+(�89 4, 

"Additional nonzero coupling functions can be obtained from the symmetry relations, 
Eqs. (10). For a general expression for the C(k)(m), cf., Eqs. (34) and (39). 

Due to (14), not all of the corresponding coupling coefficients are nonzero, 
and as a consequence of the symmetry properties (10) many follow trivially 
from others. The number of nonvanishing interaction terms is further 
reduced by restrictions of the physical Hilbert space sector due to the 
band-filling. Depending on the sign of U, in the ground state the maximal 
or minimal possible number of local electron pairs is present in the system. 
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Table II. The Solutions of the Flow Equations for the Coupling Functions 
Flkl(I;  m) ,  wi th  IM(m) I -- 1 and k<~4 ~ 

k (m) F(k)(l; m) 

( + 1 )  e - /  
( + 1 , 0 )  /e - I  

( + 1 ,  + 1 , - - 1 )  (l--�89 e- t+�89 -3t 
( + 1 , - - 1 ,  +1 )  --2((l--�89 e-1+�89 -3t) 

( + 1, 0, 0) �89 - l  
(0, + 1 , 0 )  _12e l 

( +  1, 0, 0, 0) ~13e / 
(0, + 1, O, O) --�89 -I 
(+1,-1, +1,0) (_312+�89 e-,_(/+�88 e 3, 
(+1 ,  + 1 , - 1 , 0 )  ( � 8 9 1 8 9  3~)e 3, 
( + 1 ,  1 , - 1 , 0 )  ( = 1 - /  I -~I - --I + f l )  e - - f ie  
( + 1 , 0 ,  + 1 , - - 1 )  (�89189188 e- ' - - �88 -3' 
(+1,0,-1, +1) (-�89 7) e-'-(21+~)e-3' 
( + 1 , 0 ,  --1, --1) ( l - - l ) e - 1 + ( l + l ) e  -31 

a As in Table 1, only functions which are not  related by symmetry are listed. For  general 
expressions, cf., Eqs. (32) and (36)-(38). 

iiiii ......................... 

Fig. 1. The typical transformation flow of the coupling functions Ftk)(/; m) versus the flow 
parameter l, for F~l)(1 ', _+1) (solid line), for k >  1 and M(m)  = 0  (dashed line), and for k >  1 
and IM(m)l = 1 (dotted line). 
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Therefore, certain conditions apply for the number of pairs which inter- 
mediately can be destroyed or generated by the effective interactions. 
Denoting the number of particles in the system by Ne, one finds that for 
the nonvanishing interactions T<~)(m) all partial weights M ~  
ZT= 1 rni, with 1 ~< n ~< k, must satisfy the inequalities 

- �89 min(N~, 2N-- Ne) ~< sgn(U) M(n)(m) ~< 0 (19) 

At precisely half filling, N, = N, and if U >  0, or for U <  0 and arbitrary fill- 
ing, if Ne is even, one has strictly sgn(U)M(n)(m)<0, if n = l  or 
M<n-1)(m)=0. These restrictions rule out many terms, however, Y ( k )  
rapidly increases with k, e.g., 

~ o ( 1 )  = 1, ~ o ( 2 )  = 2, ~ o ( 3 )  = 6 ,  ~ o ( 4 )  = 18, ~ o ( 5 )  =50 

~o(6) = 140, ~o(7) = 392, ~o(8) = 1106, ~o(9) = 3138, ~o(10) = 8952 

(20) 
and 

~t(1) = 1, ~/~(2) =2,  JV~(3) = 6, ~/~(4) = 16, JV~(5) --45 

~11(6)= 126, JViff7)=357, ~/~ff8)=1016, Yff9)=2907, dVff10)=8350 

(21) 

Thus, at higher orders the solutions of the flow equations become 
increasingly complicated, but they are recursively related to the lower-order 
expressions. 

To obtain the recursion relations for the higher-order terms, we note 
that the solutions of the differential equations (16), (17) and the initial 
conditions (9) can be written in the form 

F(m) 

f~k)(l; m) = ~, P~k)(l; m) e -2v' (22) 
/ x=0  

where F(m) = 2(~i=11 k Imil --12]), and the p~k) are:polynomials in l, at most 
of degree k, 

k 
( k )  . a ( k )  v P~ ( l , m ) =  ~ ~.v(m) I (23) 

v = 0  
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From (16), (17) it then follows, that the coefficients a~,,~k) obey the nonlinear 
recursion relations 

~k) _ 1 ~ "  (v + x)! t,~k ) (m'~ 
a~,~(m) - - - 3  ~ =o (2/z) "-+~ ~'~+~" " 

a~ok~(m) = 0 for v ~> 1 

with 

for p ~ l  
(24) 

k - -  1 F (ml )  
(k) m 

n = l  { ml ,m2} / x ' = 0  r = 0  
m = (ml,  m2) 

• a (n) E m  ~ ~ ( k - - n )  
/ 2 ' , r ~ ' " l  ! r -- 1 + ]M(m)l . . . .  ( m 2 )  (25) 

The physical coupling coefficients can be obtained from these solutions and 
the corresponding initial conditions, 

f ' (m)  

C(k)(m)=a(o~o(m)= -- ~ a(f~0(m ) (26) 
~z= l  

The recursion relations (24), (25) are closed equations at any given finite 
order of  t/U, i.e., they involve only coe~cients  of  lower order. They provide 
the explicit conditions which determine the coupling coefficients for the 
effective interactions of the transformed Hubbard  Hamiltonian, and thus 
define a simplified expansion scheme for the strong-coupling model which 
facilitates calculations at higher orders. 

2.3. Sum Rules 

Prior to the solution of the flow equations for the coupling functions, 
from (16), (17) a number of sum rules for thef~k)(l; m) at a given order k 
may be derived, which facilitate the calculations and provide a useful check 
for the corresponding explicit results. Thus, for fixed k the coupling func- 
tions and consequently the coefficients C(*~(m) are not all independent 
from each other. Apart from results which are also obvious by inspection 
of Tables I and II, 

F(3~(l; + 1, 0, - 1 ) + 2F(3)(I; + l, - 1, 0) = 0 

F~3~(l; 0, + 1, 0) + 2F(3)(1; + 1, 0, 0) = 0  
(27) 

F(3)(l; + 1, - 1, + 1) + 2F(3~(1; + 1, + 1, - 1) = 0 

F(4~(I; +1,  - 1 ,  +1,  - 1 )  +2F(4)(/; +1,  +1,  - 1 , - 1 ) = 0  
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the following sum rules can be obtained: 

Ft4)(/; + 1, 0, - 1, 0) + Ft4)(/; 0, + 1, - 1, 0) + 2F~4)(/; + 1, - 1, 0, 0) = 0 

Ft4)(/; + 1, - 1, + 1, 0) + Ft4)(/; + 1, - 1, 0, + 1) + 2F(4)(/; + 1, + 1, - 1, 0) = 0 

and 

F(4)(l; +1, + 1 , - - 1 ,  0)+F(4)(/; +1,  +1 ,0 , - -1 ) + F( 4 ) ( / ;  +1 ,0 ,  + 1 , - - 1 )  

+r(4)(/; +1, --1, --1, 0 )=0  (28) 

for k = 4, and 

F(5)(/; +1,  - 1 ,  + 1 , - 1 ,  O)+FtS) ( l ;  +1,  - 1 ,  +1 ,0 ,  - 1 )  

+ 1/2F~5)(l; + 1 , - 1 , 0 ,  + 1 , - - 1 ) = 0  

F(5~(l; +1, - 1 , - 1 ,  +1,  0)+F~S)(/; +1,  - 1 ,  - 1 , 0 ,  +1)  

+ 1/2F(5)(l; + 1, - 1, O, - 1, + 1) = 0 

F(S)(/; +1,  + 1 , - 1 , - 1 ,  0)+F(S)(/; +1,  + 1 , - 1 , 0 , - 1 )  

+ 1/2F(S)(l; +1, +1 ,0 ,  - 1 ,  - 1 ) = 0  

and 

FtS)(l; + 1, O, O, -- 1, O) + F(5)(l; + 1, O, - 1, O, O) + F(5)(l; O, + 1, O, - 1, O) 

+ 2FtS)(/; 0, + 1, - 1, 0, 0) = 0 (29) 

for k = 5. These results can easily be extended for higher orders, although 
here we restrict ourselves to list only the above relations. 

2.4. Construct ion of General  Solut ions 

For special cases closed general expressions for the exact solutions of 
the flow equations and the corresponding physical coupling coefficients can 
be derived. For this purpose, let us first consider interaction terms 
T(k)(m(j)) with only a single nonzero entry of the index vector m at the 
j t h  position, m(j)=(0, . . . ,0 ,  m, 0 ..... 0), with m =  +1. For the coupling 
functions f ~ ) ( l ;  m(j)) of these interactions one then finds 

( k ) .  d(k)(J) m k llZ, 1 with k~>l (30) 
f m  (/, re(j)) -- ( k -  1)~ 
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where the flow equation (17) implies the recursion relation 

d~k)(j) = d ( k - 1 ) ( j ) - - d ~ k - l ) ( j  - 1) with 1 <~j<~k (31) 

and the initial condition d i n ( l ) =  1. This leads to the solution 

m k l ( _ l ) J + l  1~_ I 
f~)(l; m ( j ) ) =  (32) 

( j - -  1 )! (k - j ) !  

With this result one now may evaluate the coupling functions for physical 
interactions with two nonzero entries of the index vector at positions j ,  and 
J2, where mj, = -mj2 = m, so that m(j l ,  J2) = (0,..., 0, m, 0,..., O, -m ,  0,..., 0). 
From (16) one obtains the flow equation 

df~ok)(l; re(J1, J2)) 

J2 --Jr - -  1 

=2me -2' ~ f~d,+')(1;m(jl))f~kff, k-v)(l;m(jz--j l--V)) (33) 
v = 0  

Using the results (32) this equation can be solved explicitly, and the corre- 
sponding general coupling coefficient is readily derived 

C'k ' (m( j ,  j2))=mk+l(--2)J2--J,--k+l(J2--2~(k--2~ 
' Jl l J k k - j 2 J  

for l ~ j l < j 2 < . k  (34) 

Proceeding now to unphysical interactions with k >~ 3 and three nonzero 
entries, we consider the special cases 

m+ +_ = (m, m, 0,..., 0, - m )  

m + _ +  =(m,  - m ,  0 ..... 0, m), and (35) 

m +  = ( m , - m ,  0 ..... 0 , - m )  

Applying the results of Eqs. (32)-(34), for such intermediary interaction 
terms one derives the following general expressions for the corresponding 
coupling functions: 
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k 3 2v-l(k__2__ v) 
m k + l f ( ~ ) ( l ; m + + _ ) = l +  1 - k / 2  + e  2l 

v=o V! 

k - - 2  l v 
( - - 1 ) k m k + l r ( / ~  "Jm~,, m + _ + ) = l - k ~ 2 +  ~" v! 2 k -2 -~  

v = O  

k 32v- l (k__v__2v-k+3 ) I v 
+ e-21 ~ v! 

v = O  

l v (36) 

(37) 

and 

k 2 

2 ~ - 2 ( - 1 ) k m ~ + ' r  ~k) rl' m+ _ ) =  -e-21-+ - E ( - 2 l ) "  . ,  m~-- -- .t 
v ;  

v = O  

(38) 

These general results for the coupling functions encapsulate the explicit 
expressions listed in Table II. They can be used to obtain the solutions for 
special coupling coefficients with k/> 4 and four nonzero index components: 

mk+ I 

c{k)(m, m, 0 ..... O, - -m,  - -m)  - 2/,:_3 

( - m )  k+' ( k - 2 )  
C~k)(m, - m ,  0 ..... O, m, - m )  - 2 k 3 

mk+l 
C~k)(m, --m, 0,..., 0, --m, m) = ~ - T  (( -- 1) k -  1) 

(39) 

3. C O M P A R I S O N  WITH OTHER A P P R O A C H E S  

For  higher orders of the t /U-expansion it is increasingly inconvenient 
to carry out the degenerate perturbation theory. Approaches going beyond 
the leading orders therefore generally utilize a unitary transformation of the 
original Hubbard  Hamiltonian to derive the new effective interactions, 

H'  = eSHe s = ~.. [ S, H ] ,  
n ~ O  

(40) 

with the n-fold commutator  [ S, H ]  ~ = [ S, [ S, H ]  n 1 ], and [ S, H ]  0 = H. 
Depending on the choice for S, different expansion schemes to obtain the 
higher-order terms have been proposed. While in the approach of Chao, 
Spatek, and 0leg (15~ the transformation is chosen such that the resulting 
effective Hamiltonian conserves the number of local electron pairs only in 
f irs t  order of t/U, a systematic iterative method which eliminates the 
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unphysical interactions order by order in subsequent steps has been for- 
mulated by MacDonald, Girvin, and Yoshioka/~7) It is well known that 
beyond the leading order, i.e., O(t2/U), the Chao-Spalek-Olew transforma- 
tion is an uncontrolled approximation/lS'16) However, the method of con- 
tinuous unitary transformations, as formulated in the preceding section, 
allows to clarify the specific assumptions behind this approximation, and to 
identify the interaction terms which it neglects. 

3.1. The Chao-Spatek-Ole~,  Approx imat ion  

In this section we show that the results derived in the approximation 
of Chao, Spatek, and Ole~ ~s) can be obtained in the framework of the flow 
equation method, if the generator ~/of the continuous transformation con- 
tains only first-order terms, and all higher-order interactions involving at 
least one To are neglected. Chao, Spatek, and Oleg apply a canonical trans- 
formation which in our notation can be written 

t T S = ~ (  + I - T  1) (41) 

and by means of (40) directly derive all higher-order interactions, utilizing 
an approximation for the band energies which neglects the To contribution 
to the kinetic energy. Thus, we choose a generator 

~l(l) =uF(1)(I)(T+I -- T ,) (42) 

For the effective interactions, we assume that only terms which do not 
contain To are present, 

t ~- 1 

0(I) = U~_~ ~ F~k)(l;m)T(k)(m) with {m}={mlVmir  (43) 
k = l  {m} 

The choice (42) for the generator results in the flow equations 

d F ( 1 ) ( l ;  m) = --F(1)(/; m) for m = _1 (44) 

while for k >~ 2 one finds 

d F ( k ) ( l ;  m) =e  1 ~ (mlF(~-l)(l; m2) --m2F(k-*)(l; ml) ) (45) 
{ml  ,m2} 

m = (nil  , m  2 ) 
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where terms with Z k ~= ~ Im, l<  k will be neglected. These equations lead to 
the solution F~)(I; m ) = e  -z, and the observation that the coupling func- 
tions F~)(I; m) can be factorized in a coefficient c~k)(m) which depends 
only on the operator product, and a function F{*~ which absorbs the 
/-dependence, 

F~)(I; m) = c~)(m) F(k)(l) (46) 

The final form of the flow equations in the Chao-Spatek-Ole~ approxima- 
tion thus reads 

dF~k)(l)=e-lF ~k 1)(1 ) for k ~> 1 (47) 

if we define F~~ -1 ,  and the coupling coefficients are given by the 
recursion relations 

c'k (m) = Z 
{,-~,"2} 

m = { m l , m 2 )  

(mlc(~-l)(m2)--m2c(k-l)(ml)) for k>~2 (48) 

with c~)(m)= 1. These relations imply that only terms with [M(m)] < k are 
nonzero. The solutions of (47) are linear combinations of exponentials, 

k 

F~)(l) = ~ a~k)e .t (49) 
n = O  

where the coefficients are determined by the conditions 

k 

a~ k)= --l'7(k--l)-- ~ n - -  I with n~>l, and y' a~k)=O with k~>2 (50) 
/ ' /  n = O  

From Eqs. (50) one can derive a relation which involves only the lowest- 
order coefficients, 

a~o ~)= ~ ( - 1 ) ~ + '  K! a~~ ~) (51) 

with the initial values a~0~ = - 1  and a~0~)= 0. The solutions of the equations 
(51) are then given by the simple expression 

k - 1  
a~)=  k! (52) 
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and more generally 

a~)_(-1)"k-n-1 
n! (k-n)! (53) 

To solve the flow equations completely, we now have to find the solution 
for the recursion relations (48). It is straightforward to show by induction 
that it can be written in the following form: 

(54) 
k 

ct/~'(m)=(--1)k(i~=lmi ) ~ ( ~ 5 ~ ) ( - - 1 ) i m i  
i = 1  

From (52) and (54) the coupling coefficients C~)(m)=ctk)(m)a(0 k) are 
finally obtained, which agree with the results of Chao, Spatek, and OleO. tlS) 
For k ~< 6, the coupling functions and coefficients are listed in Table III. 

3.2. An Improved Linear Approximation 

In the original formulation of the Chao-Spatek-Ole~ approximation, 
all interaction terms which involve To have been disregarded, due to the 
neglect of the finite width of the Hubbard bands. This appears to be crucial 
for the development of their formalism, and it is difficult to incorporate 
a systematic improvement of this deficiency in the original treatment. 
However, in the framework of the flow equation method such an 
approximation for the band width is not necessary. To the contrary, the 
neglect of interaction terms which are generated by the transformation flow 
seems very unnatural and unmotivated. Within the continuous unitary 
transformation formulated in the preceding section, one may thus easily 
find an improvement of the expansion of Chao, Spatek, and Ole~ by simply 
taking into account these neglected terms. Closed expressions can again be 
derived for the corresponding coupling coefficients. Therefore, we again 
start with the generator (42), which contains only linear contributions, and 
in the process of the transformation keep all higher-order interactions. Also 
for these new interaction terms the results (44)-(51) still apply. Since noth- 
ing changes for the interaction terms without a T 0, which we have studied 
so far, in the following we only consider contributions which involve a To 
term. One finds that such interactions can contain at most one To operator, 
due to the linear approximation (42) for the flow generator r/which does 
not involve T o . Therefore, the new interactions are described by an index 
vector m;=(ml,..., mj, 0, mj+l ..... mk), where me= +1. Since T O itself is 
invariant under the transformation flow, with F~I)(/)--1 one obtains the 
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Table II1. The Solutions of the Flow Equations for the Coupling Functions 
F(k)(I; m)=cCk~(m) FCk)(I), and the Coupling Coefficients C(k)(m) for k~<6, as 

Obtained in the Chao-Spafek-Ole~, Approximation, Eqs. (42) and (43) ~ 

k (m) C(k)(m) F~k)(l) 

! e l 

2 l - -  e - 2 !  

3 - - I  I - -31  3 1 -- i e  + 5e 

( + l )  

(+1, -1)  
+1, +1, -1 )  

+1, -1 ,  +1) 

+1, + 1 , - 1 , - 1 )  

+1, -1 ,  +1, -1 )  

+1, +1, + 1 , - 1 )  

+ 1 , + 1 , - 1 ,  +1) 

+1,+1,  + 1 , + 1 , - 1 )  

+1, +1, +1, -1 ,  +1) 

+1, +1, -1 ,  +1, +1) 

+1, + 1 , + 1 , - 1 , - 1 )  

+1, + 1 , - 1 , - 1 , + 1 )  

+1, +1, -1 ,  +1, -1)  

+ 1 , - 1 ,  +1, + 1 , - 1 )  

- 1 , + 1 ,  +1, + 1 , - 1 )  

+ 1 , - 1 ,  + 1 , - 1 , + 1 )  

+ 1 , + 1 , + 1 ,  + 1 , + 1 , - 1  

+ 1 , + 1 , + 1 ,  + 1 , - 1 , + 1  

+1, +1, + 1 , - 1 ,  +1, +1 

+1, +1, +1, +1, -1 ,  -1  

+1, +1, + 1 , - 1 , - 1 ,  +1 

+1, +1, + 1 , - 1 , + 1 , - 1  

+1, +1, -1 ,  +1, -1 ,  +1 

+1, + 1 , - 1 , + 1 , + 1 , - 1  

+1, -1 ,  +1, +1, +1, -1  

+1, + 1 , + 1 , - 1 , - 1 , - 1  

+1, + 1 , - 1 , - 1 , - 1 ,  +1 

+1, +1, 1, + 1 , - 1 , - 1  

+1, -1 ,  +1, +1, -1 ,  -1  

+ 1 , - 1 , - 1 , + 1 , - 1 ,  +1 

+1, -1 ,  +1, -1 ,  +1, - 1  

+1, -1 ,  + 1 , - 1 , - 1 , + 1  

+1, -1 ,  -1 ,  +1, + 1 , - 1  

0 

+1 
+~ 
4 

3 

+�89 
-1  
+~ 

4 
+} 
+} 

15 
7 

15 

+} 
2 

15 

+~ 
+75 

+~ 
+~ 
-75 

I1 

+4 
+, 
! 

12 
+ -  

+4 
5 

+-~ 
+~ 

18 

1 _~e - t+2e  -2t �89 -4t 

15 -/ -zt 5 -3t i 5t 1 - - ~ - e  + 5 e  5e - + ~ e  

1 - ~ e - / +  9e -2/__ 8e - 3 / +  3e - 4 / _  }e  -6/  

"Note that F~k)(l) is given with the normalisation a~ k~ = 1. 
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starting condition c(~)(0) = 1, and the initial values u 0-(~ = 0 and a(o 1) = 1. For 
the new terms the solutions of Eq. (51) then read 

1 a ( k ) _ ( - 1  )" 1 (55)  
a~ok) = ( k _  1)! and n! ( k - n - l ) !  

To complete the solution for general C(k)(m), one again shows by induc- 
tion that for the new interaction terms the recursive relations (48) are 
satisfied by the expression 

C(k + ')(mJ)= ( -  1)k+J k(j)(i=lfimi) with O ~ j ~ k  (56) 

The corresponding coupling functions and coefficients are listed in 
Table IV. The results yield a systematic improvement of the expansion of 
Chao, Spatek, and OleO, and provide a consistent linear approximation. 
Keeping all effective interactions which are generated by this transforma- 
tion, terms connecting different Hubbard bands are eliminated to first 
order from the Hamiltonian. 

Table IV. The Solutions of the Flow Equations for the Coupling Functions 
F(k)(I;m)=c(k)(m) F(k~(I), and the Coupling Coefficients c(k)(m) for k~<6, 

Resulting from the Improved Linear Approximation, Eqs. (55) and (56)" 

k (m) C(k)(m) F(k)(l) 

1 (o) + l 
2 (+l,O) +1 

3 (+1, +1, o) +�89 

(+1,o, +l) -1 
4 (q.1, q.1, q.1, O) q.~- 

(+1,  +1,0, +1) -�89 

5 (+1, +1, +l, +1, o) +~ 

(q,l, q-l, +1,0, q.l) - ~  

(+1, +1,0, +1, +1) +�88 

6 (+1, +1, q.1, +1, +1,0) + ~  

(+1, +1, q.1, q.l,0, +1) --21 

(q.1, q.1, q.l,O, q.1, q.1) + 1  

1 

1 - - e  - t  

1--2e lq.e 2/ 

l _ 3 e - t q . 3 e  2 1 e  31 

1--4e l+6e 21--4e 31+e-41 

1--5e-/q.10e -z1-10e 3tq.5e-4t--e-St 

"Other nonzero coefficients differ at most in the sign and are not listed. 
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3.3. The  M a c D o n a l d - G i r v i n - Y o s h i o k a  S c h e m e  

A unitary transformation of the Hubbard  model which eventually 
removes all terms from the Hamil tonian that connect different sectors of the 
Hilbert space has been proposed by MacDonald,  Girvin, and Yoshioka. (17) 
In their scheme, the transformation S is determined iteratively in such a 
way, that all interactions which do not conserve the number  of local elec- 
tron pairs are eliminated up to a certain order of t/U. This generates new 
interaction terms in higher orders, and some of them need to be removed 
in a next step. Thus, the transformation is constructed order by order, and 
S can be written in the form 

S= ~ tu-~ S ~k) (57) 
k = l  

In first order, all unphysical interaction terms are eliminated if one chooses 

S (1) = T+ 1 -- T_ 1 (58) 

This choice for S generates new interactions of order t2/U, which again 
couple different Hilbert subspaces and need to be eliminated. This is 
achieved with 

S~2)= [ r + ~ ,  To] + I T _ , ,  To] (59) 

In contrast to the results derived from the flow equations, here in higher 
orders of t/U the unphysical interactions which are generated inter- 
mediately also involve terms with IM(m)l > 1, e.g., 

S (3)= 1 / 4 [ [ T + l ,  To], T+~] - 1 / 4 [ [ T _ , ,  To], T 1] 

-b [ [ T + I ,  To], To ] - -  [ [ Z _ l ,  To], To] 

- 2 / 3 [ [ T + I , T _ I ] , T + I ] - 2 / 3 [ [ T + I , T  1 ] , T  1] (60) 

Repeating this procedure up to the desired order gives the corresponding 
effective Hamiltonian. To third order in t/U, the coupling coefficients of the 
resulting effective interactions in the physical Hilbert subspace are in agree- 
ment  with the C(k)(m) obtained from the solutions of the flow equations as 
given in Table I. In higher orders, however, there are some differing results 
for the two methods. 2 These differences can be understood, if we consider 

2 The first discrepancy between our results and those explicitly listed in ref. 17 is found for 
k = 4, with C(4~(0, + 1, - 1, 0) = 0 and C(4)( -~- 1, - 1, 0, 0) = 1/2, in contrast to the values 
given in Table I. 
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the complete unitary transformation which is obtained after integrating out 
the continuous transformation flow. The flow equation (8) corresponds to 
the transformation 

eS(t~ = Ttexp ( fs dl' ~(l')) (61) 

where Tt performes/-ordering in the usual manner. One then finds 

S(1)=fodl'tl(l')+ �89 dl' dl"[~(l'),q(l")]+ ... (62) 

If we now insert our flow generator (7) together with the coupling func- 
tions of Table II into this equation, at order t3/U 3 the resulting S(oo) is 
found to differ from the S = S M G  Y obtained by MacDonald, Girvin, and 
Yoshioka, S(oo ) = S M G  Y "-[- z ~ S ,  with 

t 3 
AS=~5(E[T_I,  To], T+l] -- [ [T+ , ,  To], T_,])  + ... (63) 

This difference AS is due to the continuous adjustment of the unitary trans- 
formation to the couplings of the Hamiltonian. It reflects a residual 
freedom in the choice of the transformation which eliminates interactions 
between different Hubbard bands, since such a transformation is uniquely 
determined at most up to arbitrary transformations within the bands. It is 
this result (63) for AS which precisely accounts for the differences of the 
coupling coefficients at order k = 4. It is also worth noting that the genera- 
tion of interaction terms with IM(m)l > 1 is peculiar for performing the 
unitary transformation in one step, corresponding to S(~)  as given by 
(62), whereas the continuous transformation flow does not involve such 
terms. 

3.4. General Unitary Transformations 

Since the unitary transformation which leads to a t/U-expanded effec- 
tive Hamiltonian for the Hubbard model is not unique, let us finally con- 
sider the possible consequences related to the remaining degree of freedom. 
The arbitrary transformations AS within the Hubbard bands can be 
written in the general form 

t k 
AS= ~ ~ ~, D~k)(m) T~)(m) (64) 

k = l {m} 
M ( m )  = 0 

822/88/i-2-34 
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where due to the antihermiteicity of the generator and the particle-hole 
symmetry of the Hamiltonian one analogously to the symmetry properties 
(10) finds the relations 

D(~)( - ffi) = --(D(k)(m))* 
(65) 

D(k)(--m) = ( -- 1) k D(k)(m) 

These symmetry requirements imply that D (~)= 0, so that AS is at least of 
second order in t/U. Since [ V, dS] =0, the lowest-order contribution of 
dS to the effective Hamiltonian may occur only at order t3/U 2 or higher. 
Although in general different unitary transformations may thus lead to a 
different form of the effective Hamiltonian expressed by the Tm operators, 
for the half-filled Hubbard model the effective spin interactions derived by 
the flow equation method to fifth order agree with those obtained by 
degenerate perturbation theory and by the MacDonald-Girvin-Yoshioka 
approach, as is shown in the next section. 

3.5. The Spin Interactions 

To illustrate the result for the effective Hamiltonian for an interesting 
case and to compare with expressions obtained by other approaches, we 
consider the Hubbard model with positive U and with a half-filled band. In 
the subspace with lowest energy, this corresponds to single occupancy of 
each lattice site, and in this subspace the interactions can be expressed 
completely by spin operators. Following the arguments given in Section 2.2 
[cf., Eq. (19)], at half band-filling the number of contributing interaction 
terms at a given order in t/U reduces significantly. Up to fifth order, one 
obtains the effective Hamiltonian 

t 2 
H(oo) = --'-~T_IT+I 

-I'-~- 5 T 1T+IT_IT+I-T 1ToToT+I-~T_IT_IT+IT+I 

(66) 

where terms with odd powers in t vanish due to the particle-hole symmetry 
and the resulting invariance of the spectrum under t - -*- t .  This is in 
accordance with a general theorem shown by Takahashi. (9) Therefore, we 
find the effective spin Hamiltonian 

t 2 t 4 
a s p i n  = ~ H 2 + ~ H 4 + . . .  ( 6 7 )  
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In order to calculate the explicit form of the interactions in spin space, we 
have to reexpress the Tm in terms of fermionic operators according with (3), 

* In this way one finds in leading and then identify the spins, sr = Goa~,Go,. 
order the well-known mapping on the antiferromagnetic Heisenberg model, 

H 2 = l  E Dr l r2 (S r  I "Sr  2 - -  1) 
f i r  2 

The next higher-order interactions are given by 

(68) 

H 4 = - 2 ~ D , , ~ 2 ( s ~ ,  s , 2 - 1 ) + � 8 9  ~ D r l r 2 D r 2 r 3 ( S r l ' S r 3  - |  ) 
fir 2 r I r2r 3 

_]_1 E Orlr2Or2r3Or3r4Or4rl{(1--Srl'Sr 2 
rl r2 r3 r4 

- -  S r l  " S r 3  - -  S r l  " S r 4  - -  S r 2  " S r 3  - -  S r 2  " S r 4  - -  S r 3  " S t 4  ) 

+ 5 [ ( S r l '  Sr2)(Sr3 'Sr4 ) "q- (Srl" Sr4)(Sr2 �9 St3 ) --  (Sr l '  Sr3)(Sr2 �9 Sr4)] } (69)  

where the sums are over sets of distinct site labels. This expression is still 
valid for arbitrary lattice and spatial dimension, since all information about 
the details of the lattice is contained in the connectivity matrix Dr,,. The 
result (69) is in agreement with earlier calculations for the half-filled 
positive-U Hubbard  modeU 9' ~7) The agreement with the fourth-order result 
of MacDonald, Girvin, and Yoshioka is already apparent from (66), since 
at half band-filling those Tta)(m) which due to (63) carry differing coupling 
coefficients in the flow equation method give a vanishing contribution. 3 

Also away from half filling the fourth-order results for the spin 
Hamiltonians derived by the two methods agree. For  negative U and an 
even number of particles in the system, only empty or doubly occupied 
sites are present in the lowest-energy subspace, so that again the differing 
terms vanish. In the positive-U case, due to the corresponding first sum 
rule in Eq. (28) which is obeyed by the results of both approaches, the dif- 
fering contributions add up to the same spin interaction. 

4. S U M M A R Y  A N D  C O N C L U S I O N S  

In this work the method of continuous unitary transformations has 
been applied to the Hubbard  model. It has been shown that such a trans- 
formation can be used to derive a systematic and exact t/U-expansion of 
the original Hubbard  Hamiltonian which eliminates all interactions terms 

3 Cf. footnote 2 and note that To annihilates all lowest-energy states of a half-filled band for 
U > 0, and all those states at arbitrary filling and even particle number for U < 0. 
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that are nondiagonal in relation to the Hilbert space sectors belonging to 
a different number of local electron pairs. The resulting flow equations for 
the effective interactions can be solved exactly, leading to recursive rela- 
tions which only involve the calculation of numerical coefficients. These 
recursion relations are closed at any order of t/U, and provide a sim- 
plified scheme to perform calculations at higher orders. To third order, the 
explicit results for the effective Hamiltonian obtained within this frame- 
work are equivalent to those derived previously by MacDonald, Girvin, 
and Yoshioka. Due to the remaining freedom in the choice of the unitary 
transformation, in higher orders some differences are found. The resulting 
spin interactions, however, are in agreement. Our approach additionally 
allows to derive sum rules for the coupling functions and to obtain general 
expressions for the exact solutions of special cases of the physical coupling 
coefficients. The flow equation method also clarifies some of the 
approximations and assumptions which are employed in the perturbative 
treatment of Chao, Spatek, and Oleg. It is able to identify the interaction 
terms which are neglected in their derivation, and suggests a systematic 
improvement of their results which leads to a consistent linear approxima- 
tion. Finally, it has been shown that different unitary transformations 
which block-diagonalize the Hubbard Hamiltonian may lead to different 
forms for the explicit t/U-expansion only at order t 3 / U  2 o r  higher. 

ACKNOWLEDGMENT 

The author wishes to thank F. Wegner for helpful discussions. 

REFERENCES 

1. J. Hubbard,  Proc. Roy. Soc. A 276:238 (1963); M. C. Gutzwiller, Phys. Rev. Lett. 10:159 
(1963). 

2. P. W. Anderson, Phys. Rev. Lett. 34:953 (1975). 
3. P. W. Anderson, Phys. Rev. 115:2 (1959); C.L. Cleveland and R. Medina, Am. J. Phys. 

44:44 (1976). 
4. T. Kato, Progr. Theor. Phys. 4:514 (1949). 
5. J. des Cloizeaux, Nucl. Phys. 20:321 (1960). 
6. H. Primas, Rev. Mod. Phys. 35:710 (1963). 
7. D. J. Klein and W. A. Seitz, Phys. Rev. B 8:2236 (1973); ibid. 9:2159 (1974); ibid. 10:3217 

(1974). 
8. L. N. Bulaevskii, Soy. Phys. JETP 24:154 (1967). 
9. M. Takahashi,  J. Phys. C 10:1289 (1977). 

10. J. K. Freericks, Phys. Rev. B 48:3881 (1993); T. Yildirim, A. B. Harris, A. Aharony, and 
O. Entin-Wohlman,  Phys. Rev. B 52:10239 (1995). 

11. J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149:491 (1966). 
12. A. B. Harris and R. V. Lange, Phys. Rev. 157:295 (1967). 



Strong-Coupling Expansion for the Hubbard Model 511 

13. V. A. Kapustin, Soy. Phys. Solid State 16:520 (1974). 
14. M. Heise and R. J. Jelitto, Z. Phys. B 25:381 (1976); J. E. Hirsch, Phys. Rev. Left. 54:1317 

(1985); C. Gros, R. Joynt, and T.M. Rice, Phys. Rev. B 36:381 (1987); A. Teubel, 
E. Kolley, and W. Kolley, J. Phys. A 23:L837 (1990). 

15. K. A. Chao, J. Spalek, and A. M. OleO, J. Phys. C 10:L271 (1977), Phys. Lett. A 64:163 
(1977); Phys. Rev. B 18:3453 (1978). 

16. A. M. OleO, Phys. Rev. B 41:2562 (1990); A.H. MacDonald, S.M. Girvin, and 
D. Yoshioka, Phys. Rev. B 41:2565 (1990). 

17. A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B 37:9753 (1988). 
18. F. Wegner, Ann. Physik 3:77 (1994). 
19. O. J. Heilmann and E. H. Lieb, Trans. N.Y. Acad. Sci. 172:583 (1971); E. Nowak, Z. Phys. 

B 45:173 (1981); M. Pernici, Europhys. Lett. 12:75 (1990); C.N. Yang and S. C. Zhang, 
Mod. Phys. Lett. B 4:759 (1990). 


